What's the stability of virus in general

What's the stability of virus in general

In general, viruses are more sensitive than bacteria or fungi to inactivation by physical and chemical agents, but there are important exceptions. Knowledge of specific viral sensitivity to environmental conditions and particular physical and chemical agents is therefore important for preserving the infectivity of viruses as reference reagents and in clinical diagnostic specimens.

How temperature affect the virus stability.

The principal environmental condition that may adversely affect the infectivity of viruses is temperature. In most cases, viral envelope proteins are denatured within a few minutes at temperatures of 55 to 60°C, with the result that the virion is no longer capable of normal cellular attachment, penetration, and/or uncoating. Many viral capsid proteins are only slightly more heat resistant. At ambient temperature, the rate of decay of infectivity is slower but significant, especially in the summer or in the tropics.

As a rule of thumb, the half-life of most viruses can be measured in seconds at 60°C, minutes at 37°C, hours at 20°C, days at 4°C, and years at −70°C or lower. In general, the enveloped viruses are more heat-labile than the nonenveloped viruses.

Ionic Environment and pH

 On the whole, viruses are best preserved in an isotonic environment at physiological pH, but some tolerate a wide ionic and pH range. For example, most enveloped viruses are inactivated at pH 5–6, rotaviruses and many picornaviruses survive the acidic pH of the stomach without loss of infectivity. A 1 M solution of magnesium cations has been used to stabilize enteroviruses, for example, in stocks of poliovirus vaccine.

Lipid Solvents and Detergents

 Lipid solvents such as ether or chloroform or detergents such as sodium deoxycholate readily destroy the infectivity of enveloped viruses—these agents must be avoided in laboratory procedures concerned with maintaining the viability of viruses. On the other hand, mild detergents are commonly used by virologists to solubilize viral envelopes and liberate proteins for use as vaccines or serological reagents.

Echo Biosystems is committed to delivering high-quality viral proteins to support your scientific research. We have developed a series of high-quality viral proteins including glycoprotein, Matrix protein, Nucleoprotein, and Phosphoprotein to meet your research needs.

We can't find products matching the selection.
Copyright © 2021-present Echo Biosystems. All rights reserved.